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After a brief review of the finite pulse time effects in flash thermal diffusivity 
measurements, an analytical expression for an exponential shape pulse was 
determined using the Green function method. The results were compared with 
those obtained by Larson and Koyama. It was found that, using the Larson 
and Koyama equation, when the dimensionless time co is equal to zero, the 
dimensionless temperature rise V cannot reach zero, and when o)p, the time 
characterizing the dimensionless pulse, approaches 1/n 2 (n = 1, 2, 3,...), a large 
error of ~ol/2 will result. These contradictions have been resolved by the present 
work. In other respects, both sets of results concurred. The results are compared 
with the triangular pulse and are discussed. 
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1. I N T R O D U C T I O N  

The flash m e t h o d  for measur ing  thermal  diffusivity was first p r o p o s e d  by 
P a r k e r  et al. [ 1 ]  30 years  ago. Since the seventies, it has gained in 
popu l a r i t y  to such an extent  tha t  over  8 0 %  of the current  the rmal  
diffusivity measurements  utilize this technique.  This g rowth  can be 
a t t r ibu ted  to the basic  s implici ty of the method ,  the small  sample  size 
required,  the rap id i ty  of  the measurements ,  the high rel iabi l i ty  and  
accuracy,  the abi l i ty  to use the technique from cryogenic  to very high 
tempera tures ,  and  the extensive adap tab i l i t y  for measur ing  mater ia l s  whose 
diffusivities range  f rom 10 7 to 10 .3  m 2. s 1. A schemat ic  d i a g ra m of one 

such a p p a r a t u s  is shown in Fig. 1 [2 ] .  Very simply,  the m e t h o d  involves 
subject ing the front  surface of a small  size sample  to a shor t  energy pulse 
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Fig. 1. Schematic diagram of UMIST laser flash apparatus. 

and measuring 
dimensionless temperature rise V can be expressed by [ 1 ] 

V(L, t )=  1 +2  ~ (-1)nexp(-n2~o) 
n=l  

where 

the resultant temperature rise of the rear surface. The 

(1) 

T(L, t) 
v(L, t ) - -  (2) 

Tm 
g2~t 

~ - -  L2 (3) 

and L is the sample thickness, t is time, and Tm is the maximum 
temperature rise of the rear surface, as shown in Fig. 2. The diffusivity is 
usually determined from the relation 

0.1388L 2 
= - -  (4) 

tl/2 

where ta/2 is the time from the initiation of the energy pulse to where the 
temperature rise on the rear surface has reached half of its maximum value, 
TM. Equation (2) is based upon the duration of the energy pulse being 
short compared to tl/2. If this is not the case, then the details of the shape 
and duration of the energy pulse become important and must be 
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Fig. 2. Dimensionless plot of rear surface temperature 
history. 

considered in deriving an appropriate expression for thermal diffusivity c~. 
The shape of the energy pulse may vary depending on the energy source. 
Usually, a Nd glass laser is used as the source of energy pulse, but flash 
lamps [1], electron beams [-3], and other types of lasers [4] have also 
been used. The shape and duration of the energy pulse affect the rear 
temperature response curve. This is known as the finite time pulse effect 
and causes the rear temperature history to lag behind in the curve in Fig. 2 
[-5]. During the last 20 years, many authors have derived various 
equations for different pulse shapes. Among them, Larson and Koyama [6] 
derived an equation for the case of an exponential-shape input pulse using 
contour integration; although a square wave is considered a closer 
approximation to the shape of the pulse from a Nd glass laser [5]. 
However, if an exponential pulse is assumed, some of the results obtained 
from the equation of Larson and Koyama are not acceptable. The purpose 
of the present paper was to derive an equation that can used to correct the 
finite pulse time effect for such exponential pulse shape to yield improved 
results. 

2. ANALYSES 

2.1. Equation of Larson and Koyama 

For a pulse whose shape is described by ~b(t), Larson and Koyama 
[-6] define 

~(t) = - -  exp 1 -  (5) 
t p  

840/14/1-9 
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where tp is the time from the initiation of the energy pulse till the maxi- 
mum output of the energy pulse has been reached. Using the coordinate 
system given in Fig. 3 for a pulse incident upon the front surface and no 
heat losses from the sample, the dimensionless expression derived by 
Larson and Koyama is 

( ~ 2/0 ) P ) 1/2 exp ( - ~o/o~ p) [ 
V I ( L  , t) = 1 2 sin(/rz/fop) 1/2 

t _  

+ 2  ~ ( - - 1 ) " ~  p{-n2~ 
n=l ~, --n2(-Op) 2 

T(L, t ) -  T. VI(L, t)= T(L, ~ ) - T .  
~2~tp 

~Op- L2 

x2~t 
o9-  L2 

2 0  ~ (~2 ~1/2 
1 +  + - -  

gOp \ (.Op/ 
ctg(~2/mp) 1/2 ] 

(6) 

(7) 

(8) 

(9) 

where Tn is the ambient temperature. 

2.2. Revised Mathematical  Derivation 

It is more convenient to select the coordinate as shown in Fig. 4, 
whence the initial and boundary conditions become 

Laser  

pulse 

Fig. 3. 
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Coordinate selected by Larson and Koyama [6]. 
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,OCp 63 t 63X2 

- k  Ov = 0  
~X x=O 

Ox x = L - ~ te t/tp 
lp 

v(x, o) = o 

v(x, t) = y(x,  t) + z(x, t) ) 

x2qo 
y ( x ,  t) = 2 - ~ p  t e x p ( - t / t p )  

It can be shown that  Eq. (11) reduces to 

~z ~2z 
(?t - ~ ~ x  2 = f ( x ,  t )  "~ 

(?z = 0 
~XX x= 0 

~z = 0 
~X x = L  

z(x, O) = 0 
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(10) 

(11) 

(12) 

(13) 
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The Green function of Eq. (13) satisfies the following conditions: 

t 
f (x , t )=--q~ 

OG 02G 
Ot ~-S~x 2=0 

~3G = 0  
x=O 

gG = 0  
~X x=Z 

G(x, t)l,=~+o = 6 ( x -  ~) 

(14) 

(15) 

The solution of Eq. (15) is 

G(x, t; ~, ~) = ~ c~(~, r) exp L2 j cos - - ~  
n~O 

c~(~, r) 2--~-- cos n ~  (n = O, 1, 2;...) 
L~n L 

The solution of Eq. (13) can be written as 

Let 

z(x, t) = f(~, v) G(x, t; ~, r) dr d~ 
= 0  = 0  

- -  - -  L - -  C O S  - -  
Lkt~ L.=o 6~ =o =o \ tp/ I 

•176 ~-nz~z~(t-[ - f f  r) I & d~ 

q o  

zm = LCpp 

where Zm is the maximum temperature rise. 
Therefore z(x, t) is given by 

z(x, t) = Zm 1 - - \ 7 - ~  + - -  + 1 e - ~ / ~  + 2 ( -- 1)~ cos - -  
(.Op n = l  

e - nz~~ co 
• 1 +..-2T7~..2~ e-~176 ' ~  

- -  rtZgOp n COp/, 1 -- n2~pj )  

nT~x  

L 

(16) 

(17) 

(18) 

(19) 
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At  the  rea r  surface  of  the  s a m p l e  

x = 0, 

t h e n  

Le t  

y(O, t) = o 

v(0, t ) = y ( 0 ,  t)+z(O, t ) = z ( 0 ,  t) 
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v(o, t) 
V2(0, t ) =  (20) 

Zm 

T h e  resu l t ing  e q u a t i o n  can  be  wr i t t en  as 

//~20) (O ) 
V2(O,t)=l-~,6-~+~pp+l e-~ n=l ~' (--1)n 

I ( C0 ) e-~~ ] (21) e-n2'~ 1 + ~ 1 -- n2COp[ 
x (1 --n-~mp) 2 -1 _ n2co p 

3. COMPARISON BETWEEN EQ. (6) AND EQ. (21) 

T h e  p re sen t  e q u a t i o n  [ E q .  (21 ) ]  a n d  tha t  of  L a r s o n  a n d  K o y a m a  

[ E q .  (6 ) ]  were  c o m p u t e r i z e d  for  va r i ous  va lues  of  ~o, Ogp, a n d  V. Se lec ted  

va lues  o f  Vt [ f r o m  Eq.  (6 ) ]  a n d  V2 [ f r o m  Eq.  (21 ) ]  a re  g iven  in T a b l e  I. 

I t  is s h o w n  that ,  w h e n  Ogp a p p r o a c h e s  1In 2 (n = 1, 2, 3, 4) a n d  09 = 0, 

the  d imens ion l e s s  t e m p e r a t u r e  rise 1/2 = 0. H o w e v e r ,  at  the  s a m e  t ime,  V~ 

Table I. The Quantities v 1 and V 2 from Various Values of ~Op 

~o=0 c~ = 0.5 09= 1.5 

~p VI V2 VI V2 Vl V2 

1.005 8.1 • 10 -5 0 1.6 • 10-4 1.4 • 10 4 0.063 0.063 
0.4 5.3 • 10-4 0 8.9 x 10-4 9.2 x 10-4 0.21 0.21 
0.252 1.4 x 10 -3 0 1.9 x 10 -3 2.1 • 10 -3 0.31 0.31 
0.111 7.7x 10 -3 0 6.5 x 10 -3 6.7x 10 -3 0.45 0.45 
0.063 2.7 • 10 2 0 1.2 x 10 2 1.2 • 10 -2 0.50 0.50 
0.05 4.7 • 10 -2 0 1.5 • 10 -2 1.5 • 10 -2 0.51 0.51 
0.041 7.8• 2 0 1.7• 2 1.7x10 2 0.52 0.52 
0.005 4.82 • 103 0 3.3 • 10 2 3.3 • 10 -2 0.55 0.55 
0.0024 6.347 • 102 0 3.5 • 10 2 3.5 • 10 2 0.56 0.56 
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Table II. Values of ca,/2 When cap Approaches 1/12 and 
V~ = V2 = 1/2 

(D 1/2 

cop By Eq. (6) By Eq. (21) 

1.005 3.05 3.34 
1.020 3.35 3.36 
0.995 3.53 3.32 
0.980 3.30 3.29 

does not equal zero, but changes as COp varies. When COp is far from l/n 2, 
the values of V, are in agreement with V2. If COp = 1In 2, both V1 and I/2 are 
undefined. 

If  we let V~ = V2-2,- • the corresponding values of o91/2, obtained from 
Eqs. (6) and (21), may  be deduced for various values of i/t/2. These a r e  
computed for n - -  1, 2, 4 and listed in Tables II, I I I  and IV. 

From Tables L IV ,  it is obvious that, when COp approaches 1In 2, there 
are significant errors in values from Eq. (6); for example, if cop = 1.005, then 
col/2=3.05; when cop=0.995, then col/2=3.53. This means that, even 
though the values of COp change by only about  1%, that COl/2 would be 
changed by more than 15 %, whereas the corresponding values of COl/2 from 
Eq. (21) would have a relative error of less than 1%. 

4. C O M P A R I S O N  W I T H  A T R I A N G U L A R  P U L S E  

The shape of the exponential energy pulse can be approximated by a 
triangular pulse of duration z with the maximum occurring at flz, where fl 

Table IlL Values of ca~/2 When O)p Approaches 1/2 2 and 
Va = V2 = 1/2 

o) 1/2 

cap By Eq. (6) By Eq. (21) 

1.25015 2.29 1.90 
t.25020 1.92 1.90 
0.24975 1.78 1.90 
0.24970 1.88 1.90 
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Table IV. Values of co1,,2 When cop Approaches 1/4 2 and 
VI = V2 = 1/2 

(~01/2 

cop By Eq. (6) By Eq. (21) 

1.25015 1.50 1.50 
1.25020 1.50 1.50 
0.24975 1.50 1.50 
0.24970 1.50 1.50 
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is a fraction between zero and  one. The equat ion  for calculat ion of thermal  

diffusivity c~ t for a t r iangular-shaped pulse of dura t ion  0 can be given 

as [5] 

Cl L2 
at -- - -  (22) 

r tl/2 - -  " c  

where the constants  cl and  c2 of Eq. (22) vary with 3. For  example, when 
/3 = 0.15, c 1 = 0.34844 and  c 2 = 2.5106, but  when 3 = 0.28, c1 = 0.31550 and 

c2 = 2.2730, and when/~  = 0.5, cl = 0.27057 and  c2 = 1.9496. 
Equa t ion  (21) was solved for various values of cox/2 and cop. Selected 

values are plotted in Fig. 5. Since the relat ion between co1/2 and COp is nearly 

linear up to values for COp of 0.24, a closed l inear solut ion can be obtained,  

e)l/2 = 2.13cop + 1.365 (23) 
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Fig. 5. Relationship between cop and co~/2- 
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Relationship between t m and ct/ct t for 0< t l / 2<0 .05s  for 
t v = 6  x 10-4 s. 

Combining Eq. (23) with Eqs. (8) and (9) yields 

0.066L 2 
- (24) 

0.476tl/2 --  tp 

Using the equation for an assumed triangular-shaped pulse in the high- 
temperature thermal conductivity laboratory of UMIST, the following 
formula is derived for fl = 0.55, ~ = 6 x 10-4 s: 

0.2613L 2 
at - 1.882tl/2 - 6 x 10 -4 (25) 

If we let tp = 0.55v in Eq. (24) and compare this with Eq. (25), the relation 
among ~, ~t, and tl/2 can be obtained. The results between ~/~, and tl/2 are 
plotted in Fig. 6. It is shown that, under the same conditions, the values of 
thermal diffusivity calculated by Eq. (24) are always higher then those 
obtained using Eq. (25). The curve in Fig. 6 can be used to correct 
the thermal diffusivity results calculated using the triangular-shape 
approximation. 

5. C O N C L U S I O N  

When a~ -~ ~ and ep = 0, the dimensionless temperature rise V1 using 
the Larson and Koyama equation [Eq. (6)] and that obtained in the 
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present analysis [Eq. (21)] both reduce to the equation given by Parker et 
al. [1 ]. When co = 0, the dimensionless temperature rise V2 calculated by 
the present equation [Eq. (21)] is equal to zero, but for the Larson and 
Koyama equation [Eq. (6)], V1 is not equal to zero, thus violating its 
initial boundary condition. When cop approaches 1/n 2, the error in V1 
calculated by Eq. (6) is much larger than that in V2 of Eq. (21). The results 
calculated by both equations are in good agreement where the dimen- 
sionless pulse characterization time COp deviates from 1In 2. When an 
exponential pulse is approximated by a triangular-shape pulse, the values 
of thermal diffusivity are always lower than what they should be and can 
easily be corrected according to Fig. 6. 
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